Harvard University, Fall 2003

Chemistry 170: Chemical Biology
Mondays and Wednesdays 1:00 pm - 2:30 pm, Pfizer Lecture Hall, 12 Oxford Street

Instructors

Professor David R. Liu: liu@chemistry.harvard.edu, Mallinckrodt 303J, 496-1067
Professor Liu's office hours: Wednesdays 2:30-3:30 pm, Mallinckrodt 303J
Head Teaching Fellow: Jeff Doyon, doyon@fas.harvard.edu
Teaching Fellows: Michael Fischbach, fischbac@fas.harvard.edu
Polina Kehayova, kehayova@fas.harvard.edu
Vijay Krishnamurthy, krishn@fas.harvard.edu
Tom Snyder, tsnyder@fas.harvard.edu
Arturo Vegas, vegas@fas.harvard.edu

Prerequisites

A strong background in organic chemistry is required. A basic understanding of biochemistry and molecular biology is assumed although a lack of this understanding can be remedied during the semester by very diligently reviewing the relevant materials (including the suggested textbooks and papers).

Textbooks

No texts are formally required; the references below are recommended and should be available in the Cabot Science Library, the Chemistry library, the Harvard Coop, or from online bookstores. If you are considering pursuing a field related to chemical biology you may want to own some or all of these books.

Strongly recommended:
 Creighton, T. E. Proteins: Structure and Molecular Function
 Blackburn, G. M. and Gait, M. Nucleic Acids in Chemistry and Biology
 Fersht, A. Structure and Mechanism in Protein Science
 Silverman, R. B. The Organic Chemistry of Enzyme-Catalyzed Reactions

Recommended as excellent references for specific topics covered in this course:
 Branden, C. and Tooze, J. Introduction to Protein Structure
 Sanger, W. Principles of Nucleic Acid Structure
 Silverman, R. B. The Organic Chemistry of Drug Design

Recommended as general references in biological chemistry and biochemistry:
 Dugas, H. Bioorganic Chemistry
 Stryer, L. Biochemistry
 Voet, D. Biochemistry

Lecture notes, journal articles from the primary literature, and lists of supplementary references will be distributed regularly and form the majority of the course material.

Reserve materials and course web site

All lectures will be videotaped and the tapes placed on reserve in the Cabot Science Library in the Science Center. In addition, the Chemistry 170 website will also contain the lecture slides in color PDF format, problem sets and solutions, section papers, and other handouts when possible. To access the website, go to http://www.courses.fas.harvard.edu/~chem170 and login with username = chem170 and password = fortytwo.
Weekly Help Sessions

Two teaching fellows will be available to answer remaining questions about lecture material each Monday from 7:00-8:00 pm in the Liu Group Room (Mallinckrodt 303L). To gain entrance to Mallinckrodt in the evening hours, enter through Fairchild by showing your Harvard ID to the guard. From Fairchild, take the stairs up to the 4th floor of Fairchild, and cross over to the 3rd floor of Mallinckrodt through the door connecting the two buildings. Unless otherwise noted, there will be no formal presentations by the teaching fellows during these sessions, so please come with your questions. No help session will be held on October 13 (Columbus Day), December 22, or December 29. You are always welcome to contact your teaching fellows outside of these sessions for additional guidance.

Course Requirements

Sections are mandatory and will be held once a week starting Monday, September 22 in Mallinckrodt 217 (in the CCB department center). Sections involve a detailed discussion of two previously distributed journal articles, problem set questions due that week, and recent lectures. Section preference forms will be handed out in class on September 15 and are due by noon on Wednesday, September 17 in Mallinckrodt 303E. If we do not receive your section preference form on time you will be assigned a section.

Problem sets will consist of questions posed in the previous week’s lecture notes together with more in-depth questions handed out in advance of the relevant lectures. These questions are designed to foster deeper thinking about topics introduced in lecture and to help students prepare for taking examinations (below). Attending lectures and completing suggested readings will provide sufficient background to complete problem sets. *Written answers to the previous week’s problem set questions (covering two lectures) are due each Monday at 1:00 (before lecture). Problem sets will be graded for both accuracy and effort.*

Two take-home examinations will be distributed during the semester on Wednesday, October 29, 1:00 pm (midterm), and on Monday, January 5, 1:00 pm (final). Each examination will be cumulative in material covered and will be due in Professor Liu’s office 48 hours (midterm) or 72 hours (final) after distribution. Students are free to use their own class notes, handouts, and the library during this time, but are not allowed to collaborate with other students.

An original research proposal in chemical biology is due at the end of the course. Research proposals will be presented during public poster sessions held Thursday, January 15 and Friday, January 16. A proposal topic must be submitted to your teaching fellow in the form of a brief outline or description no later than Monday, November 24 for approval and guidance. If this proposal is approved, a revised version of your proposal including suggestions by your TF is due on Monday, December 8. If your first proposal is rejected, a proposal on a new topic is due December 8. A brief written version of the proposal is also due with your poster presentation. See the attached handout for details regarding the format of the outline and proposal.

The course grade will be determined as:
- Section participation and problem sets (20%)
- Midterm examination (20%), due October 31, 2003 at 1:00 pm
- Final examination (30%), due January 8, 2004 at 1:00 pm
- Research proposal (30%), due in outline November 24, revised outline due December 8, 2003, written proposal and poster presentation due January 15-16, 2004
Chemistry 170, Fall 2003 Course Outline and Take-Home Lessons

Lecture dates are subject to change.

Physical properties of nucleic acids (Lectures 1 & 2: September 15 & 17)

What is the chemical basis for nucleic acid structure and for the specificity behind nucleic acid hybridization?
What are the geometric, chemical, and biological properties of the common forms of DNA and RNA structure?

- Nomenclature
- Hydrogen bonding
- Ionization states
- Anti and syn conformers
- Tautomerization
- Ribose conformers
- Interactions holding DNA together
- Forces determining nucleic acid structure
- Modern solid-phase DNA synthesis
- Peptide nucleic acids (PNAs)
- DNA and RNA structural diversity
 - DNA polymorphism
 - RNA polymorphism
 - Roles of DNA and RNA forms in biology
 - Higher order DNA and RNA structures
 - Chemical etiology of nucleic acids
- Unnatural base pairs
- Insights into DNA replication

Physical properties of proteins (Lecture 3: September 22)

What chemical principles determine protein structure at the molecular level?
How can our understanding of these chemical principles explain the macromolecular properties of proteins?

- Post-translational modification
- Post-translational rearrangement
 - Histidine decarboxylase
 - Phenylalanine ammonia lyase
- Amino acid properties
- Determinants of protein structure
- Hydrophobic packing in phage ⬤ repressor
- Protein conformational space
- Secondary and higher order structures

Novel biosyntheses of proteins (Lecture 4: September 24)

How can proteins with nonproteinogenic amino acids be biosynthesized in vitro and in vivo?
At what level can we interpret a given set of mutagenesis data?
How are proteins biosynthesized nonribosomally?

- Chemical approaches to studying proteins
- Incorporation of unnatural amino acids into proteins in vitro
 - Chorismate mutase
 - Ligand-gated ion channel receptors
 - Staphylococcal nuclease
- Site-specific chemical proteolysis
- Nonribosomal peptide synthesis
 - Mechanism
 - Structural basis for amino acid specificity
 - Increasing structural diversity
 - Peptide cyclization by NRPSs

Mechanistic enzymology (Lectures 5 & 6: September 29, October 1)

What chemical factors contribute to rate acceleration by enzymes?
What are the mechanisms by which common cofactors catalyze reactions?
How does chorismate mutase accelerate the Claisen rearrangement of chorismate to prephenate?
What are current theories explaining how OMP decarboxylase achieves its remarkable rate enhancement?
How do squalene cyclase and oxidosqualene cyclase catalyze the formation of triterpenes?

Components of enzymic catalysis
Transition state stabilization
Proximity effects and prepaying entropy
General acid/general base catalysis
Nucleophilic and electrophilic catalysis
Electrostatic catalysis and modulating the dielectric
Cofactor catalysis
 NADH
 FADH₂
 Pyridoxal phosphate
 Thiamine pyrophosphate
Chorismate mutase
Orotidine 5’-monophosphate decarboxylase
Kinetic isotope effects
Enzyme-catalyzed mechanisms of triterpene formation
 Chemical studies on squalene and oxidosqualene cyclases
 Substrate folding
 Cyclization events
 Rearrangement
 Biological studies on squalene and oxidosqualene cyclases
 Structural studies
 Enzyme labeling studies
 Site-directed mutagenesis

De novo protein design (Lecture 7: October 6)
What approaches and basic principles have researchers used to design proteins?
What are the types of protein structures we can make by de novo design approaches?
What are the current limitations of de novo protein design?
How does a molten globule differ from a typical native protein?

The protein design problem
Designability of protein folds
Minimalist approaches to protein design
Empirical approaches to protein design
Molten globules
Context effects: Janus and Chameleon
Computational design of proteins
 Structural motifs
 Receptors
 Catalysts
Synthetic enzymes and receptors

Rational protein engineering (Lecture 8: October 8)
What are the approaches that researchers have taken towards successfully engineering proteins rationally?
What factors contribute to the complexity of proteins and limit our ability to rationally engineer them?

Fiddling with proteins ("protein terrorism"): the uphill climb
Dehydrogenases that use different cofactors
Trypsin proteases with new specificities
Engineering a protein ligase
Nuclear hormone receptor engineering
Engineering new activities into existing active sites
Engineering homing endonucleases
October 13: Columbus Day

Molecular evolution (Lectures 9 & 10: October 15, 20)

What are the requirements to evolve a molecule?
What are the advantages and disadvantages of the various ways to screen or select for desired properties?
How have researchers evolved proteins with enhanced activities or new substrate specificities?
How have researchers evolved proteins and nucleic acids with entirely new activities?

Concepts in molecular evolution
 Rational and combinatorial approaches to problem solving
 Implementation of evolutionary approaches
 Sources of diversity
 Methods to amplify molecules
 Tagging and compartmentalization
 Picking desired molecules
 In vitro versus in vivo methods; screens versus selections

Evolving enhanced natural function
 \(\beta \)-lactamase and cephalosporinase
 Oxidosqualene cyclase
 Subtilisin
 Green fluorescent protein (GFP)
 Aminoacyl-tRNA synthetases
 Human interferon-\(\alpha \)
 Tetracycline repressor

Evolving new function
 Remodeling proteins
 Protein-protein interface of hGH
 Minimizing protein A
 Erythropoietin peptide mimetics
 Protease-resistant peptide ligands by mirror image phage display

Nucleic acid catalysis (Lecture 11: October 22)

What essential biological processes are known to be catalyzed by RNA?
What are common mechanisms of RNA (or DNA) catalysis?
What reactions beyond those found to be ribozyme-catalyzed in nature have been catalyzed by laboratory-evolved nucleic acids?

Natural catalytic RNA
 Tetrahymena self-splicing intron
 Hepatitis delta virus
 The ribosome

Laboratory-evolved catalytic RNA
 Aminoacyl-tRNA synthetase
 RNA ligase
 RNA polymerase
 Continuous evolution of an RNA ligase
 Diels-Alderase

Catalytic DNA
 Evolution with modified nucleotides

Emerging Roles of RNA (Lecture 12: October 27)

How have researchers and nature used ligand-binding RNA aptamers to regulate RNA function?
What is RNAi and how is it thought to work?
How have small RNAs been implicated in gene-specific translational inhibition?

Allosteric ribozymes
Natural riboswitches
RNA interference (RNAi)
 Discovery
 Mechanism
 Translational inhibition
microRNAs
Listeria thermosensor
tmRNA

(End of midterm material)

October 29: Midterm handed out at 1:00 pm in the Pfizer Lecture Hall; no lecture

DNA damage (Lecture 13: November 3)
What are the most reactive sites on DNA and RNA to nucleophilic, electrophilic, or photochemical reaction?
What are the chemical mechanisms behind mutagenesis?
- Spontaneous
 - Deamination
 - Depurination
- Oxidative damage mechanisms
- Ionizing irradiation damage mechanisms
- UV irradiation damage mechanisms
- Chemical abuse of DNA
 - Alkylation and damage by electrophiles
 - Nucleophilic attack of DNA
 - Crosslinking DNA
- Metabolically activated DNA damage agents

Mechanisms of DNA repair (Lecture 14: November 5)
What are the mechanisms by which enzymes repair lesions to DNA?
How does the cell distinguish between correct and incorrect bases when repairing mismatched (but otherwise normal) DNA?
- Four systems for DNA repair
- Direct reversal of alkylation
 - Ada
 - AlkB
- Base excision repair
 - Uracil glycosylase
 - MUG
 - Oxoguanine glycosylase
- Methyl-directed mismatch repair
 - MutS finds the mismatches
 - MutL is the switch
 - MutH is the endonuclease

Novel natural proteins (Lectures 15 & 16: November 10, 12)
What properties make each of these four classes of proteins unique?
What is the chemical basis for each of their unique properties?
How have researchers exploited these properties toward novel uses of these proteins?
- Green fluorescent protein (GFP)
 - Chromophore formation
 - Protein structure
 - Generating new GFP variants
 - Red fluorescent protein
- Inteins: self-splicing proteins
 - Structural basis for protein splicing
 - Chemical mechanisms of splicing
 - Applications of inteins
 - Protein purification and tagging
 - Expressed protein ligation
- Catalytic antibodies
 - Using immunological diversity
Recruiting catalytic groups
Reactive immunization
An antibody aldolase
Evolution of antibodies in vitro

Prions
The protein only hypothesis
Prion transmission and propagation
Structure and proposed mechanisms of fibril formation

Metabolic Engineering (Lecture 17: November 17)
What methods have been used to introduce orthogonal chemical handles on the outside of cells?
What are the drawbacks and advantages of these methods?
How is erythromycin biosynthesized in mechanistic detail?
How can the gene structure of a polyketide synthase be used to partially predict the polyketide’s structure?

Engineering cell surface glycoproteins
Decorating cell surfaces with ketones
Targeting cells with toxins
Creating artificial virus receptors

Engineering polyketide synthases
Erythromycin biosynthesis
Engineering new polyketide synthases
Combining synthetic substrates
Libraries of polyketides from libraries of polyketide synthases

Challenges to metabolic engineering of polyketides

Molecular mechanisms of drug action and drug resistance (Lecture 18: November 19)
How do β-lactams kill bacteria?
What is the molecular basis for resistance to β-lactams?
How does vancomycin inhibit bacterial growth?
What are the components and molecular mechanisms behind vancomycin resistance?
What are the chemical bases for Viagra’s pharmacological properties?
Penicillin and β-lactams
Mechanisms of β-lactam resistance
Vancomycin
Mechanisms of vancomycin resistance
VanA, VanH, VanX, VanS, VanR
New mechanisms of glycopeptide action
Chemical approaches to overcoming vancomycin resistance
How Viagra™ works
Development of Viagra™
Mechanism of sildenafil action

Rational design of macromolecular ligands (Lectures 19 & 20: November 24, December 1)
How were polyamides designed to sequence specifically recognize DNA?
How do the latest generation of DNA-binding polyamides differ in binding properties from that of distamycin, and what is the molecular basis of these differences?
What are the principles that drive rational drug design?
How were saquinavir and ritanovir developed?

Sequence-specific DNA binding polyamides
Minor groove binding
Distamycin: A:T and T:A binding
Designing C:G and G:C binding
Improving binding by entropy prepayment
Cracking the A:T/T:A degeneracy
Targeting genes in vivo with polyamides
Blocking DNA binding by proteins
Inducing DNA cleavage
Inhibiting nucleosome translocation

Rational drug design of protein binding ligands
Structure-based drug design
HIV and HIV protease
 Development of saquinavir
 Development of ritonavir
 Cyclic ureas: a newer approach
 Resistance to protease inhibitors
Qualitative principles of rational drug design

November 26: no lecture (pre-Thanksgiving break)

Combinatorial approaches to small molecule discovery (Lecture 21: December 3)

How are combinatorial approaches being applied to the synthesis and discovery of small molecules?

What are the chemical requirements for using combinatorial chemistry in small molecule discovery and what are the most common solutions that satisfy these requirements?

 Solid phase synthesis
 - Resins
 - Linkers

 Sources of diversity
 - Building block
 - Stereochemical
 - Skeletal rearrangements

 Tagging strategies
 - Spatially separated synthesis
 - Direct methods
 - Deconvolution
 - Encoding with tags
 - Halogenated aromatics
 - DNA tags
 - Radiotags

 Picking desired molecules
 - Target-oriented synthesis of a library of benzodiazepines
 - Diversity-oriented synthesis of a library of polycyclic compounds
 - Incorporating evolution-based elements into combinatorial small molecule discovery
 - Dynamic combinatorial chemistry
 - Target-directed combinatorial chemistry
 - DNA-templated synthesis

Chemical genetics (Lecture 22: December 8)

What similarities and differences emerge when comparing small molecules and genetic mutations as entries into studying biological processes?

How was FK506BP discovered and what is the molecular basis for its immunosuppressive properties?

What principles were used to apply chemical genetics to the study of protein tyrosine kinases?

 - Forward and reverse traditional genetics and chemical genetics
 - Chemical genetics in immunosuppression
 - FK506 and cyclosporin A
 - Elucidation of the target of FK506
 - The function of FK506 binding protein
 - Forward chemical genetics of mitosis: monastrol
 - Reverse chemical genetics in protein kinases
 - Developing orthogonal kinase-ATP pairs
 - Probing Src and Fyn kinase targets
 - Engineering kinase-specific inhibitors

Genomics (Lecture 23: December 10)

What are the most common methods for studying genes and gene expression on a genome-wide scale?

How do these methods work operationally?

What insights into biological systems have emerged from the use of genomics?

What challenges lie ahead?
Introduction to genomics
Synthetic oligonucleotide arrays
 Synthesizing the array
 Case studies using synthetic DNA arrays
 Expression monitoring in yeast
 Kinase inhibition

CDNA arrays
 Printing the array
 Case studies using CDNA arrays
 Heat shock and phorbol ester response
 Genome-wide expression in the diauxic shift
 Genomics of tuberculosis treatment

Probing protein-DNA interactions with DNA arrays
Transfected cell microarrays

Proteomics (Lecture 24: December 15)
What is the need for proteomics?
How are proteins separated and identified on an organism-wide scale?
How can the function of proteins and their interaction partners be determined on this scale?
What new technologies drive proteomics?

Introduction to proteomics
Protein separation and identification
 Two-dimensional electrophoresis
 Mass spectrometry of proteins
 Case study: phosphorylated proteins
Determining protein function
 Activity-based proteome profiling
 General approach to identifying protein function
 Proteome profiling
Revealing protein interactions
 Yeast two hybrid experiments
 Yeast n-hybrid
 Proteome-wide protein-protein interaction mapping
Proteomics-oriented technologies